Exercise 10

Solve the differential equation or initial-value problem using the method of undetermined coefficients.

$$
y^{\prime \prime}+y^{\prime}-2 y=x+\sin 2 x, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

Solution

Since the ODE is linear, the general solution can be written as the sum of a complementary solution and a particular solution.

$$
y=y_{c}+y_{p}
$$

The complementary solution satisfies the associated homogeneous equation.

$$
\begin{equation*}
y_{c}^{\prime \prime}+y_{c}^{\prime}-2 y_{c}=0 \tag{1}
\end{equation*}
$$

This is a linear homogeneous ODE, so its solutions are of the form $y_{c}=e^{r x}$.

$$
y_{c}=e^{r x} \quad \rightarrow \quad y_{c}^{\prime}=r e^{r x} \quad \rightarrow \quad y_{c}^{\prime \prime}=r^{2} e^{r x}
$$

Plug these formulas into equation (1).

$$
r^{2} e^{r x}+r e^{r x}-2\left(e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}+r-2=0
$$

Solve for r.

$$
\begin{gathered}
(r+2)(r-1)=0 \\
r=\{-2,1\}
\end{gathered}
$$

Two solutions to the ODE are $e^{-2 x}$ and e^{x}. By the principle of superposition, then,

$$
y_{c}(x)=C_{1} e^{-2 x}+C_{2} e^{x} .
$$

On the other hand, the particular solution satisfies the original ODE.

$$
\begin{equation*}
y_{p}^{\prime \prime}+y_{p}^{\prime}-2 y_{p}=x+\sin 2 x \tag{2}
\end{equation*}
$$

Since the inhomogeneous term is the sum of a polynomial and a sine function, the particular solution is $y_{p}=(A+B x)+(C \cos 2 x+D \sin 2 x)$.

$$
\begin{aligned}
y_{p}=(A+B x)+(C \cos 2 x+D \sin 2 x) \rightarrow y_{p}^{\prime}=(B)+ & (-2 C \sin 2 x+2 D \cos 2 x) \\
& \rightarrow \quad y_{p}^{\prime \prime}=(-4 C \cos 2 x-4 D \sin 2 x)
\end{aligned}
$$

Substitute these formulas into equation (2).

$$
\begin{aligned}
& (-4 C \cos 2 x-4 D \sin 2 x)+[(B)+(-2 C \sin 2 x+2 D \cos 2 x)]-2[(A+B x)+(C \cos 2 x+D \sin 2 x)]=x+\sin 2 x \\
& \quad(B-2 A)+(-2 B) x+(-4 C-2 C+2 D) \cos 2 x+(-4 D-2 C-2 D) \sin 2 x=x+\sin 2 x
\end{aligned}
$$

Match the coefficients on both sides to get a system of equations for A, B, C, and D.

$$
\left.\begin{array}{rl}
B-2 A & =0 \\
-2 B & =1 \\
-4 C-2 C+2 D & =0 \\
-4 D-2 C-2 D & =1
\end{array}\right\}
$$

Solving it yields

$$
A=-\frac{1}{4} \quad \text { and } \quad B=-\frac{1}{2} \quad \text { and } \quad C=-\frac{1}{20} \quad \text { and } \quad D=-\frac{3}{20}
$$

which means the particular solution is

$$
y_{p}=-\frac{1}{4}-\frac{1}{2} x-\frac{1}{20} \cos 2 x-\frac{3}{20} \sin 2 x .
$$

Therefore, the general solution to the ODE is

$$
\begin{aligned}
y(x) & =y_{c}+y_{p} \\
& =C_{1} e^{-2 x}+C_{2} e^{x}-\frac{1}{4}-\frac{1}{2} x-\frac{1}{20} \cos 2 x-\frac{3}{20} \sin 2 x,
\end{aligned}
$$

where C_{1} and C_{2} are arbitrary constants. Differentiate it with respect to x.

$$
y^{\prime}(x)=-2 C_{1} e^{-2 x}+C_{2} e^{x}-\frac{1}{2}+\frac{1}{10} \sin 2 x-\frac{3}{10} \cos 2 x
$$

Apply the boundary conditions to determine C_{1} and C_{2}.

$$
\begin{gathered}
y(0)=C_{1}+C_{2}-\frac{3}{10}=1 \\
y^{\prime}(0)=-2 C_{1}+C_{2}-\frac{4}{5}=0
\end{gathered}
$$

Solving the system yields $C_{1}=1 / 6$ and $C_{2}=17 / 15$. Therefore,

$$
y(x)=\frac{1}{6} e^{-2 x}+\frac{17}{15} e^{x}-\frac{1}{4}-\frac{1}{2} x-\frac{1}{20} \cos 2 x-\frac{3}{20} \sin 2 x .
$$

